Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055184

RESUMO

To date, there is no overarching proposition for the ontogenetic-neurobiological basis of self-regulation. This paper suggests that the balanced self-regulatory reaction of the fetus, newborn and infant is based on a complex mechanism starting from early brainstem development and continuing to progressive control of the cortex over the brainstem. It is suggested that this balance occurs through the synchronous reactivity between the sympathetic and parasympathetic systems, both which originate from the brainstem. The paper presents an evidence-based approach in which molecular excitation-inhibition balance, interchanges between excitatory and inhibitory roles of neurotransmitters as well as cardiovascular and white matter development across gestational ages, are shown to create sympathetic-parasympathetic synchrony, including the postnatal development of electroencephalogram waves and vagal tone. These occur in developmental milestones detectable in the same time windows (sensitive periods of development) within a convergent systematic progress. This ontogenetic stepwise process is termed "the self-regulation clock" and suggest that this clock is located in the largest connection between the brainstem and the cortex, the corticospinal tract. This novel evidence-based new theory paves the way towards more accurate hypotheses and complex studies of self-regulation and its biological basis, as well as pointing to time windows for interventions in preterm infants. The paper also describes the developing indirect signaling between the suprachiasmatic nucleus and the corticospinal tract. Finally, the paper proposes novel hypotheses for molecular, structural and functional investigation of the "clock" circuitry, including its associations with other biological clocks. This complex circuitry is suggested to be responsible for the developing self-regulatory functions and their neurobehavioral correlates.


Assuntos
Relógios Biológicos , Tratos Piramidais/crescimento & desenvolvimento , Núcleo Supraquiasmático/crescimento & desenvolvimento , Sistema Cardiovascular/crescimento & desenvolvimento , Sistema Cardiovascular/metabolismo , Eletroencefalografia , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Gravidez , Tratos Piramidais/metabolismo , Núcleo Supraquiasmático/metabolismo
2.
Exp Neurol ; 349: 113961, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34953897

RESUMO

Increasing the intrinsic growth potential of neurons after injury has repeatedly been shown to promote some level of axonal regeneration in rodent models. One of the most studied pathways involves the activation of the PI3K/AKT/mTOR pathways, primarily by reducing the levels of PTEN, a negative regulator of PI3K. Likewise, activation of signal transducer and activator of transcription 3 (STAT3) has previously been shown to boost axonal regeneration and sprouting within the injured nervous system. Here, we examined the regeneration of the corticospinal tract (CST) after cortical expression of constitutively active (ca) Akt3 and STAT3, both separately and in combination. Overexpression of caAkt3 induced regeneration of CST axons past the injury site independent of caSTAT3 overexpression. STAT3 demonstrated improved axon sprouting compared to controls and contributed to a synergistic improvement in effects when combined with Akt3 but failed to promote axonal regeneration as an individual therapy. Despite showing impressive axonal regeneration, animals expressing Akt3 failed to show any functional improvement and deteriorated with time. During this period, we observed progressive Akt3 dose-dependent increase in behavioral seizures. Histology revealed increased phosphorylation of ribosomal S6 protein within the unilateral cortex, increased neuronal size, microglia activation and hemispheric enlargement (hemimegalencephaly).


Assuntos
Axônios , Regeneração Nervosa , Proteínas Proto-Oncogênicas c-akt/biossíntese , Tratos Piramidais/crescimento & desenvolvimento , Tratos Piramidais/lesões , Convulsões/genética , Convulsões/fisiopatologia , Animais , Feminino , Vetores Genéticos , Ativação de Macrófagos , Megalencefalia/patologia , Microglia , Neurônios/patologia , Fosforilação , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Fator de Transcrição STAT3/metabolismo
3.
Dev Med Child Neurol ; 64(2): 192-199, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34416027

RESUMO

AIM: To assess the relationship between neonatal brain development and injury with early motor outcomes in infants with critical congenital heart disease (CCHD). METHOD: Neonatal brain magnetic resonance imaging was performed after open-heart surgery with cardiopulmonary bypass. Cortical grey matter (CGM), unmyelinated white matter, and cerebellar volumes, as well as white matter motor tract fractional anisotropy and mean diffusivity were assessed. White matter injury (WMI) and arterial ischaemic stroke (AIS) with corticospinal tract (CST) involvement were scored. Associations with motor outcomes at 3, 9, and 18 months were corrected for repeated cardiac surgery. RESULTS: Fifty-one infants (31 males, 20 females) were included prospectively. Median age at neonatal surgery and postoperative brain magnetic resonance imaging was 7 days (interquartile range [IQR] 5-11d) and 15 days (IQR 12-21d) respectively. Smaller CGM and cerebellar volumes were associated with lower fine motor scores at 9 months (CGM regression coefficient=0.51, 95% confidence interval [CI]=0.15-0.86; cerebellum regression coefficient=3.08, 95% CI=1.07-5.09) and 18 months (cerebellum regression coefficient=2.08, 95% CI=0.47-5.12). The fractional anisotropy and mean diffusivity of white matter motor tracts were not related with motor scores. WMI was related to lower gross motor scores at 9 months (mean difference -0.8SD, 95% CI=-1.5 to -0.2). AIS with CST involvement increased the risk of gross motor problems and muscle tone abnormalities. Cerebral palsy (n=3) was preceded by severe ischaemic brain injury. INTERPRETATION: Neonatal brain development and injury are associated with fewer favourable early motor outcomes in infants with CCHD.


Assuntos
Lesões Encefálicas , Paralisia Cerebral , Desenvolvimento Infantil/fisiologia , Deficiências do Desenvolvimento , Cardiopatias Congênitas/cirurgia , AVC Isquêmico , Destreza Motora/fisiologia , Tratos Piramidais , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Cerebelo/diagnóstico por imagem , Cerebelo/crescimento & desenvolvimento , Cerebelo/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/patologia , Paralisia Cerebral/diagnóstico por imagem , Paralisia Cerebral/patologia , Paralisia Cerebral/fisiopatologia , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/etiologia , Deficiências do Desenvolvimento/patologia , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/crescimento & desenvolvimento , Substância Cinzenta/patologia , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico por imagem , Humanos , Lactente , Recém-Nascido , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/patologia , AVC Isquêmico/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Estudos Prospectivos , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/crescimento & desenvolvimento , Tratos Piramidais/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/crescimento & desenvolvimento , Substância Branca/patologia
4.
Cell Rep ; 37(3): 109843, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686320

RESUMO

For precise motor control, distinct subpopulations of corticospinal neurons (CSN) must extend axons to distinct spinal segments, from proximal targets in the brainstem and cervical cord to distal targets in thoracic and lumbar spinal segments. We find that developing CSN subpopulations exhibit striking axon targeting specificity in spinal white matter, which establishes the foundation for durable specificity of adult corticospinal circuitry. Employing developmental retrograde and anterograde labeling, and their distinct neocortical locations, we purified developing CSN subpopulations using fluorescence-activated cell sorting to identify genes differentially expressed between bulbar-cervical and thoracolumbar-projecting CSN subpopulations at critical developmental times. These segmentally distinct CSN subpopulations are molecularly distinct from the earliest stages of axon extension, enabling prospective identification even before eventual axon targeting decisions are evident in the spinal cord. This molecular delineation extends beyond simple spatial separation of these subpopulations in the cortex. Together, these results identify candidate molecular controls over segmentally specific corticospinal axon projection targeting.


Assuntos
Axônios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Crescimento Neuronal , Tratos Piramidais/metabolismo , Córtex Sensório-Motor/metabolismo , Substância Branca/metabolismo , Fatores Etários , Animais , Receptores de Proteínas Morfogenéticas Ósseas/genética , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Separação Celular , Feminino , Citometria de Fluxo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Rastreamento Neuroanatômico , Tratos Piramidais/crescimento & desenvolvimento , Córtex Sensório-Motor/crescimento & desenvolvimento , Transcrição Gênica , Substância Branca/crescimento & desenvolvimento
5.
Cell Rep ; 37(3): 109842, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686337

RESUMO

The cerebral cortex executes highly skilled movement, necessitating that it connects accurately with specific brainstem and spinal motor circuitry. Corticospinal neurons (CSN) must correctly target specific spinal segments, but the basis for this targeting remains unknown. In the accompanying report, we show that segmentally distinct CSN subpopulations are molecularly distinct from early development, identifying candidate molecular controls over segmentally specific axon targeting. Here, we functionally investigate two of these candidate molecular controls, Crim1 and Kelch-like 14 (Klhl14), identifying their critical roles in directing CSN axons to appropriate spinal segmental levels in the white matter prior to axon collateralization. Crim1 and Klhl14 are specifically expressed by distinct CSN subpopulations and regulate their differental white matter projection targeting-Crim1 directs thoracolumbar axon extension, while Klhl14 limits axon extension to bulbar-cervical segments. These molecular regulators of descending spinal projections constitute the first stages of a dual-directional set of complementary controls over CSN diversity for segmentally and functionally distinct circuitry.


Assuntos
Axônios/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Crescimento Neuronal , Tratos Piramidais/metabolismo , Fatores Etários , Animais , Receptores de Proteínas Morfogenéticas Ósseas/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Tratos Piramidais/crescimento & desenvolvimento
6.
Exp Neurol ; 339: 113644, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33592210

RESUMO

Axons in the corticospinal tract (CST) display a limited capacity for compensatory sprouting after partial spinal injuries, potentially limiting functional recovery. Forced expression of a developmentally expressed transcription factor, Krüppel-like factor 6 (KLF6), enhances axon sprouting by adult CST neurons. Here, using a pyramidotomy model of injury in adult mice, we confirm KLF6's pro-sprouting properties in spared corticospinal tract neurons and show that this effect depends on an injury stimulus. In addition, we probed the time course of KLF6-triggered sprouting of CST axons and demonstrate a significant enhancement of growth within four weeks of treatment. Finally, we tested whether KLF6-induced sprouting was accompanied by improvements in forelimb function, either singly or when combined with intensive rehabilitation. We found that regardless of rehabilitative training, and despite robust cross-midline sprouting by corticospinal tract axons, treatment with KLF6 produced no significant improvement in forelimb function on either a modified ladder-crossing task or a pellet-retrieval task. These data clarify important details of KLF6's pro-growth properties and indicate that additional interventions or further optimization will be needed to translate this improvement in axon growth into functional gains.


Assuntos
Fator 6 Semelhante a Kruppel/administração & dosagem , Regeneração Nervosa/efeitos dos fármacos , Tratos Piramidais/efeitos dos fármacos , Tratos Piramidais/crescimento & desenvolvimento , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Feminino , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Destreza Motora/efeitos dos fármacos , Destreza Motora/fisiologia , Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Fatores de Tempo , Resultado do Tratamento
7.
Neuroimage ; 226: 117583, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221438

RESUMO

PURPOSE: Despite the important role of manual dexterity in child development, the neurobiological mechanisms associated with manual dexterity in childhood remain unclear. We leveraged fixel-based analysis (FBA) to examine the longitudinal association between manual dexterity and the development of white matter structural properties in the corticospinal tract (CST). METHODS: High angular diffusion weighted imaging (HARDI) data were acquired for 44 right-handed typically developing children (22 female) aged 9-13 across two timepoints (timepoint 1: mean age 10.5 years ± 0.5 years, timepoint 2: 11.8 ± 0.5 years). Manual dexterity was assessed using the Grooved Pegboard Test, a widely used measure of manual dexterity. FBA-derived measures of fiber density and morphology were generated for the CST at each timepoint. Connectivity-based fixel enhancement and mixed linear modelling were used to examine the longitudinal association between manual dexterity and white matter structural properties of the CST. RESULTS: Longitudinal mixed effects models showed that greater manual dexterity of the dominant hand was associated with increased fiber cross-section in the contralateral CST. Analyses further demonstrated that the rate of improvement in manual dexterity was associated with the rate of increase in fiber cross-section in the contralateral CST between the two timepoints. CONCLUSION: Our longitudinal data suggest that the development of manual dexterity in late childhood is associated with maturation of the CST. These findings significantly enhance our understanding of the neurobiological systems that subserve fine motor development and provide an important step toward mapping normative trajectories of fine motor function against microstructural and morphological development in childhood.


Assuntos
Desenvolvimento Infantil , Mãos , Destreza Motora/fisiologia , Tratos Piramidais/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adolescente , Criança , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Feminino , Lateralidade Funcional , Humanos , Estudos Longitudinais , Masculino , Tratos Piramidais/crescimento & desenvolvimento , Substância Branca/crescimento & desenvolvimento
8.
Neuron ; 107(6): 1197-1211.e9, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32707082

RESUMO

Neural stem cells directly or indirectly generate all neurons and macroglial cells and guide migrating neurons by using a palisade-like scaffold made of their radial fibers. Here, we describe an unexpected role for the radial fiber scaffold in directing corticospinal and other axons at the junction between the striatum and globus pallidus. The maintenance of this scaffold, and consequently axon pathfinding, is dependent on the expression of an atypical RHO-GTPase, RND3/RHOE, together with its binding partner ARHGAP35/P190A, a RHO GTPase-activating protein, in the radial glia-like neural stem cells within the ventricular zone of the medial ganglionic eminence. This role is independent of RND3 and ARHGAP35 expression in corticospinal neurons, where they regulate dendritic spine formation, axon elongation, and pontine midline crossing in a FEZF2-dependent manner. The prevalence of neural stem cell scaffolds and their expression of RND3 and ARHGAP35 suggests that these observations might be broadly relevant for axon guidance and neural circuit formation.


Assuntos
Orientação de Axônios , Células-Tronco Neurais/citologia , Neuroglia/citologia , Animais , Axônios/metabolismo , Corpo Estriado/citologia , Corpo Estriado/crescimento & desenvolvimento , Espinhas Dendríticas/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Globo Pálido/citologia , Globo Pálido/crescimento & desenvolvimento , Humanos , Camundongos , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Tratos Piramidais/citologia , Tratos Piramidais/crescimento & desenvolvimento , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
9.
Neuroimage Clin ; 27: 102283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32526683

RESUMO

OBJECTIVE: Advanced paternal age is associated with poor offspring developmental outcome. Though an increase in paternal age-related germline mutations may affect offspring white matter development, outcome differences could also be due to psychosocial factors. Here we investigate possible cerebral changes prior to strong environmental influences using brain MRI in a cohort of healthy term-born neonates. METHODS: We used structural and diffusion MRI images acquired soon after birth from a cohort (n = 275) of healthy term-born neonates. Images were analysed using a customised tract based spatial statistics (TBSS) processing pipeline. Neurodevelopmental assessment using the Bayley-III scales was offered to all participants at age 18 months. For statistical analysis neonates were compared in two groups, representing the upper quartile (paternal age ≥38 years) and lower three quartiles. The same method was used to assess associations with maternal age. RESULTS: In infants with older fathers (≥38 years), fractional anisotropy, a marker of white matter organisation, was significantly reduced in three early maturing anatomical locations (the corticospinal tract, the corpus callosum, and the optic radiation). Fractional anisotropy in these locations correlated positively with Bayley-III cognitive composite score at 18 months in the advanced paternal age group. A small but significant reduction in total brain volume was also observed in in the infants of older fathers. No significant associations were found between advanced maternal age and neonatal imaging. CONCLUSIONS: The epidemiological association between advanced paternal age and offspring outcome is extremely robust. We have for the first time demonstrated a neuroimaging phenotype of advanced paternal age before sustained parental interaction that correlates with later outcome.


Assuntos
Desenvolvimento Infantil/fisiologia , Recém-Nascido Prematuro/crescimento & desenvolvimento , Tratos Piramidais/crescimento & desenvolvimento , Substância Branca/crescimento & desenvolvimento , Encéfalo/crescimento & desenvolvimento , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Masculino , Pais
10.
J Neurosci ; 40(28): 5402-5412, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32471877

RESUMO

Axon guidance molecules and neuronal activity have been implicated in the establishment and refinement of neural circuits during development. It is unclear, however, whether these guidance molecule- and activity-dependent mechanisms interact with one another to shape neural circuit formation. The formation of corticospinal (CS) circuits, which are essential for voluntary movements, involves both guidance molecule- and activity-dependent components during development. We previously showed that semaphorin6D (Sema6D)-plexinA1 (PlexA1) signaling eliminates ipsilateral projections of CS neurons in the spinal cord, while other studies demonstrate that CS projections to the spinal cord are eliminated in an activity-dependent manner. Here we show that inhibition of cortical neurons during postnatal development causes defects in elimination of ipsilateral CS projections in mice. We further show that mice that lack the activity-dependent Bax/Bak pathway or caspase-9 similarly exhibit defects in elimination of ipsilateral CS projections, suggesting that the activity-dependent Bax/Bak-caspase-9 pathway is essential for the removal of ipsilateral CS projections. Interestingly, either inhibition of neuronal activity in the cortex or deletion of Bax/Bak in mice causes a reduction in PlexA1 protein expression in corticospinal neurons. Finally, intracortical microstimulation induces activation of only contralateral forelimb muscles in control mice, whereas it induces activation of both contralateral and ipsilateral muscles in mice with cortical inhibition, suggesting that the ipsilaterally projecting CS axons that have been maintained in mice with cortical inhibition form functional connections. Together, these results provide evidence of a potential link between the repellent signaling of Sema6D-PlexA1 and neuronal activity to regulate axon elimination.SIGNIFICANCE STATEMENT Both axon guidance molecules and neuronal activity regulate axon elimination to refine neuronal circuits during development. However, the degree to which these mechanisms operate independently or cooperatively to guide network generation is unclear. Here, we show that neuronal activity-driven Bax/Bak-caspase signaling induces expression of the PlexA1 receptor for the repellent Sema6D molecule in corticospinal neurons (CSNs). This cascade eliminates ipsilateral projections of CSNs in the spinal cord during early postnatal development. The absence of PlexA1, neuronal activity, Bax and Bak, or caspase-9 leads to the maintenance of ipsilateral projections of CSNs, which can form functional connections with spinal neurons. Together, these studies reveal how the Sema6D-PlexA1 signaling and neuronal activity may play a cooperative role in refining CS axonal projections.


Assuntos
Axônios/metabolismo , Caspases/metabolismo , Tratos Piramidais/crescimento & desenvolvimento , Semaforinas/metabolismo , Transdução de Sinais/fisiologia , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Orientação de Axônios/fisiologia , Camundongos , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Neurônios/fisiologia , Tratos Piramidais/metabolismo
11.
Physiol Rep ; 8(4): e14378, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32109345

RESUMO

Corticomuscular (CMC) and intramuscular (intraMC) coherence represent measures of corticospinal interaction. Both CMC and intraMC can be assessed during human locomotion tasks, for example, while walking. Corticospinal control of gait can deteriorate during the aging process and CMC and intraMC may represent an important monitoring means. However, it is unclear whether such assessments represent a reliable tool when performed during walking in an ecologically valid scenario and whether age-related differences may occur. Wireless surface electroencephalography and electromyography were employed in a pilot study with young and old adults during overground walking in two separate sessions. CMC and intraMC analyses were performed in the gathered beta and lower gamma frequencies (i.e., 13-40 Hz). Significant log-transformed coherence area was tested for intersessions test-retest reliability by determining intraclass correlation coefficient (ICC), yielding to low reliability in CMC in both younger and older adults. intraMC exclusively showed low reliability in the older adults, whereas intraMC in the younger adults revealed similar values as previously reported: test-retest reliability [ICC (95% CI): 0.44 (-0.23, 0.87); SEM: 0.46; MDC: 1.28; MDC%: 103; Hedge's g (95% CI): 0.54 (-0.13, 1.57)]. Significant differences between the age groups were observed in intraMC by either comparing the two groups with the first test [Hedge's g (95% CI): 1.55 (0.85, 2.15); p-value: .006] or with the retest data [Hedge's g (95% CI): 2.24 (0.73, 3.70); p-value: .005]. Notwithstanding the small sample size investigated, intraMC seems a moderately reliable assessment in younger adults. The further development and use of this measure in practical settings to infer corticospinal interaction in human locomotion in clinical practice is warranted and should help to refine the analysis. This necessitates involving larger sample sizes as well as including a wider number of lower limb muscles. Moreover, further research seems warranted by the observed differences in modulation mechanisms of corticospinal control of gait as ascertained by intraMC between the age groups.


Assuntos
Envelhecimento/fisiologia , Músculo Esquelético/fisiologia , Córtex Sensório-Motor/fisiologia , Caminhada , Adulto , Idoso , Idoso de 80 Anos ou mais , Ritmo beta , Eletroencefalografia/normas , Feminino , Ritmo Gama , Humanos , Masculino , Músculo Esquelético/crescimento & desenvolvimento , Tratos Piramidais/crescimento & desenvolvimento , Tratos Piramidais/fisiologia , Reprodutibilidade dos Testes , Córtex Sensório-Motor/crescimento & desenvolvimento
12.
Neuroimage ; 210: 116552, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31972280

RESUMO

Early childhood is an important period for cognitive and brain development, though white matter changes specific to this period remain understudied. Here we utilize a novel analytic approach to quantify and track developmental changes in white matter micro- and macro-structure, calculated from individually oriented fiber-bundle populations, termed "fixels". Fixel-based analysis and mixed-effects models were used to assess tract-wise changes in fiber density and bundle morphology in 73 girls scanned at baseline (ages 4.09-7.02, mean â€‹= â€‹5.47, SD â€‹= â€‹0.81), 6-month (N â€‹= â€‹7), and one-year follow-up (N â€‹= â€‹42). For comparison, we also assessed changes in commonly utilized diffusion tensor metrics: fractional anisotropy (FA), and mean, radial and axial diffusivity (MD, RD, AD). Maturational increases in fixel-metrics were seen in most major white matter tracts, with the most rapid increases in the corticospinal tract and slowest or non-significant increases in the genu of the corpus callosum and uncinate fasciculi. As expected, we observed developmental increases in FA and decreases in MD, RD and AD, though percent changes were smaller relative to fixel-metrics. The majority of tracts showed more substantial morphological than microstructural changes. These findings highlight early childhood as a period of dynamic white matter maturation, characterized by large increases in macroscopic fiber bundle size, mild changes in axonal density, and parallel, albeit less substantial, changes in diffusion tensor metrics.


Assuntos
Desenvolvimento Infantil , Imagem de Tensor de Difusão/métodos , Fibras Nervosas , Vias Neurais , Substância Branca , Criança , Desenvolvimento Infantil/fisiologia , Pré-Escolar , Feminino , Seguimentos , Humanos , Vias Neurais/anatomia & histologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/crescimento & desenvolvimento , Tratos Piramidais/anatomia & histologia , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/crescimento & desenvolvimento , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/crescimento & desenvolvimento
13.
Brain Stimul ; 13(1): 239-246, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31420295

RESUMO

BACKGROUND: Recent work suggests that the function of intracortical interneurons activated by transcranial magnetic stimulation (TMS) is modified in older adults, with the circuits generating short-interval intracortical facilitation (SICF) at longer intervals appearing to be particularly affected. OBJECTIVE: To use SICF to quantify age-related changes in the excitability and recruitment of late synaptic inputs to corticospinal neurons, and investigate if changes within these circuits contribute to altered motor performance in older adults. METHODS: SICF was recorded with 3 different conditioning intensities in 23 young (23.0 ±â€¯4.2 years) and 21 older (67.1 ±â€¯1.1 years) adults. These measures were performed with conventional (posterior-anterior, PA) and reverse (anterior-posterior, AP) current directions using interstimulus intervals targeting late synaptic inputs to corticospinal neurons (3.5-5.3 ms). RESULTS: Peak SICF recorded with a PA current (SICFPA) was reduced in older adults (P < 0.0001), and occurred at a longer latency (P < 0.05). Furthermore, there was reduced recruitment of SICFPA in older adults (P < 0.0001), but this did not interact with the age-related shift in SICFPA (P = 0.2). In addition, reduced performance on the Purdue pegboard was predicted by increased SICFPA (P < 0.04) occurring at longer latencies (P < 0.04) in old but not young adults. For SICF recorded with an AP current (SICFAP), facilitation was again reduced at longer latencies in older adults (P < 0.0001), but recruitment was not different between groups (P = 0.7) and was unrelated to motor function. CONCLUSION: These results suggest that there are age-related changes in late synaptic inputs to corticospinal neurons and that these changes influence fine motor performance.


Assuntos
Envelhecimento/fisiologia , Potencial Evocado Motor , Córtex Motor/fisiologia , Tratos Piramidais/fisiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Córtex Motor/crescimento & desenvolvimento , Neurônios/fisiologia , Tratos Piramidais/crescimento & desenvolvimento , Sinapses/fisiologia , Estimulação Magnética Transcraniana
14.
Exp Neurol ; 324: 113136, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31786212

RESUMO

Low neuronal cAMP levels in adults and a further decline following traumatic central nervous system (CNS) injury has been associated with the limited ability of neurons to regenerate. An approach to increase neuronal cAMP levels post injury is electrical stimulation. Stimulation as a tool to promote neuronal growth has largely been studied in the peripheral nervous system or in spared fibers of the CNS and this research suggests that a single session of electrical stimulation is sufficient to initiate a long-lasting axonal growth program. Here, we sought to promote plasticity and growth of the injured corticospinal tract with electrical cortical stimulation immediately after its spinal injury. Moreover, given the importance of rehabilitative motor training in the clinical setting and in translating plasticity into functional recovery, we applied training as a standard treatment to all rats (i.e., with or without electrical stimulation). Our findings show that electrical cortical stimulation did improve recovery in forelimb function compared to the recovery in unstimulated animals. This recovery is likely linked to increased corticospinal tract plasticity as evidenced by a significant increase in sprouting of collaterals above the lesion site, but not to increased regenerative growth through the lesion itself.


Assuntos
Córtex Cerebral , Terapia por Estimulação Elétrica/métodos , Traumatismos da Medula Espinal/reabilitação , Animais , Axônios , AMP Cíclico/metabolismo , Feminino , Membro Anterior , Força da Mão , Fibras Nervosas/patologia , Regeneração Nervosa , Neuritos , Plasticidade Neuronal , Tratos Piramidais/crescimento & desenvolvimento , Ratos , Ratos Endogâmicos Lew , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/metabolismo
15.
J Neurosci ; 39(45): 8885-8899, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31537704

RESUMO

Corticospinal (CS) neurons in layer V of the sensorimotor cortex are essential for voluntary motor control. Those neurons project axons to specific segments along the rostro-caudal axis of the spinal cord, and reach their spinal targets by sending collateral branches interstitially along axon bundles. Currently, little is known how CS axon collaterals are formed in the proper spinal cord regions. Here, we show that the semaphorin3A (Sema3A)-neuropilin-1 (Npn-1) signaling pathway is an essential negative regulator of CS axon collateral formation in the spinal cord from mice of either sex. Sema3A is expressed in the ventral spinal cord, whereas CS neurons express Npn-1, suggesting that Sema3A might prevent CS axons from entering the ventral spinal cord. Indeed, the ectopic expression of Sema3A in the spinal cord in vivo inhibits CS axon collateral formation, whereas Sema3A or Npn-1 mutant mice have ectopic CS axon collateral formation within the ventral spinal cord compared with littermate controls. Finally, Npn-1 mutant mice exhibit impaired skilled movements, likely because of aberrantly formed CS connections in the ventral spinal cord. These genetic findings reveal that Sema3A-Npn-1 signaling-mediated inhibition of CS axon collateral formation is critical for proper CS circuit formation and the ability to perform skilled motor behaviors.SIGNIFICANCE STATEMENT CS neurons project axons to the spinal cord to control skilled movements in mammals. Previous studies revealed some of the molecular mechanisms underlying different phases of CS circuit development such as initial axon guidance in the brain, and midline crossing in the brainstem and spinal cord. However, the molecular mechanisms underlying CS axon collateral formation in the spinal gray matter has remained obscure. In this study, using in vivo gain-of- and loss-of-function experiments, we show that Sema3A-Npn-1 signaling functions to inhibit CS axon collateral formation in the ventral spinal cord, allowing for the development of proper skilled movements in mice.


Assuntos
Orientação de Axônios , Movimento , Tratos Piramidais/metabolismo , Semaforina-3A/metabolismo , Animais , Feminino , Aprendizagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropilina-1/genética , Neuropilina-1/metabolismo , Tratos Piramidais/crescimento & desenvolvimento , Tratos Piramidais/fisiologia , Semaforina-3A/genética , Transdução de Sinais
16.
Nat Rev Neurosci ; 20(7): 380-396, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31000796

RESUMO

The spinal cord receives, relays and processes sensory information from the periphery and integrates this information with descending inputs from supraspinal centres to elicit precise and appropriate behavioural responses and orchestrate body movements. Understanding how the spinal cord circuits that achieve this integration are wired during development is the focus of much research interest. Several families of proteins have well-established roles in guiding developing spinal cord axons, and recent findings have identified new axon guidance molecules. Nevertheless, an integrated view of spinal cord network development is lacking, and many current models have neglected the cellular and functional diversity of spinal cord circuits. Recent advances challenge the existing spinal cord axon guidance dogmas and have provided a more complex, but more faithful, picture of the ontogenesis of vertebrate spinal cord circuits.


Assuntos
Orientação de Axônios/fisiologia , Axônios/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Medula Espinal/crescimento & desenvolvimento , Animais , Humanos , Tratos Piramidais/crescimento & desenvolvimento
17.
Neuroimage ; 191: 350-360, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30818025

RESUMO

In adults, oscillatory activity in the sensorimotor cortex is coherent with contralateral muscle activity at beta frequencies (15-35 Hz) during tonic contraction. This functional coupling reflects the involvement of the sensorimotor cortex, the corticospinal pathway, and likely also ascending sensory feedback in the task at hand. However, little is known about the developmental trajectory of task-related corticomuscular connectivity relating to the voluntary control of the ankle muscles. To address this, we recorded electroencephalography (EEG) from the vertex (Cz) and electromyography (EMG) from ankle muscles (proximal and distal anterior tibial, TA; soleus, SOL; gastrocnemius medialis, GM) in 33 participants aged 7-23 yr during tonic dorsi- and plantar flexion requiring precise maintenance of a submaximal torque level. Coherence was calculated for Cz-TA, Cz-SOL, TA-TA, and SOL-GM signal pairs. We found strong, positive associations between age and beta band coherence for Cz-TA, Cz-SOL, and TA-TA, suggesting that oscillatory corticomuscular connectivity is strengthened during childhood development and adolescence. Directionality analysis indicated that the primary interaction underlying this age-related increase was in the descending direction. In addition, performance during dorsi- and plantar flexion tasks was positively associated with age, indicating more precise control of the ankle joint in older participants. Performance was also positively associated with beta band coherence, suggesting that participants with greater coherence also exhibited greater precision. We propose that these results indicate an age-related increase in oscillatory corticospinal input to the ankle muscle motoneuron pools during childhood development and adolescence, with possible implications for maturation of precision force control. Within the theoretical framework of predictive coding, we suggest that our results may reflect an age-related increase in reliance on feedforward control as the developing nervous system becomes better at predicting the sensory consequences of movement. These findings may contribute to the development of novel intervention strategies targeting improved sensorimotor control in children and adolescents with central motor disorders.


Assuntos
Músculo Esquelético/inervação , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Tratos Piramidais/crescimento & desenvolvimento , Tratos Piramidais/fisiologia , Adolescente , Tornozelo/inervação , Criança , Feminino , Humanos , Masculino , Contração Muscular/fisiologia , Córtex Sensório-Motor/crescimento & desenvolvimento , Córtex Sensório-Motor/fisiologia , Adulto Jovem
18.
Brain Res ; 1710: 209-219, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30599138

RESUMO

The corticospinal tract (CST) has a complex and long trajectory that originates in the cerebral cortex and ends in the spinal cord. Semaphorin 6A (Sema6A), a member of the semaphorin family, is an important regulator of CST axon guidance. Previous studies have shown that postnatal Sema6A mutant mice have CST defects at the midbrain-hindbrain boundary and medulla. However, the routes the aberrant fibers take throughout the Sema6A mutant brain remain unknown. In this study, we performed 3D reconstruction of immunostained CST fibers to reevaluate the details of the abnormal CST trajectories in the brains of adult Sema6A mutant mice. Our results showed that the axon guidance defects reported in early postnatal mutants were consistently observed in adulthood. Those abnormal trajectories revealed by 3D analysis of brain sections were, however, more complex and variable than previously thought. In addition, 3D analysis allowed us to identify a few new patterns of aberrant projections. First, a subset of fibers that separated from and descended in parallel to the main bundle projected laterally at the caudal pons, subsequently changed direction by turning caudally, and extended to the medulla. Second, some abnormal fibers returned to the correct trajectory after deviating substantially from the original tract. Third, some fibers reached the pyramidal decussation normally but did not enter the dorsal funiculus. Section immunostaining combined with 3D reconstruction is a powerful method to track long projection fibers and to examine the entire nerve tracts of both normal and abnormal animals.


Assuntos
Encéfalo/crescimento & desenvolvimento , Tratos Piramidais/crescimento & desenvolvimento , Semaforinas/fisiologia , Animais , Encéfalo/citologia , Camundongos Knockout , Técnicas de Rastreamento Neuroanatômico , Tratos Piramidais/citologia , Semaforinas/genética
19.
J Neurosci Res ; 97(4): 480-491, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30548647

RESUMO

We assessed the sex and the lateralization differences in the corticospinal tract (CST) during the early postnatal period. Twenty-five healthy term neonates (13 girls, aged 39.2 ± 1.2 weeks, and 12 boys aged 38.6 ± 3.0 weeks) underwent Diffusion Tensor Imaging (DTI). Fiber tracking was performed to extract bilaterally the CST pathways and to quantify the parallel (E1 ) and perpendicular (E23 ) diffusions, the apparent diffusion coefficient (ADC), and fractional anisotropy (FA). The measurements were performed on the entire CST fibers and on four segments: base of the pons (CST-Po), cerebral peduncles (CST-CP), posterior limb of the internal capsule (CST-PLIC), and corona-radiata (CST-CR). Significantly higher E1 , lower E23, and higher FA in the right compared to the left were noted in the CST-PLIC of the girls. Significantly lower E23 and lower ADC with higher FA in the right compared to left were observed in the CST-CP of the boys. Moreover, the CST-PLIC of the boys had significantly higher E1 in the right compared to the left. There was a significant increase in left CST E1 of boys when compared with girls. Girls had a significantly lower E1 , lower E23 and, lower ADC in the left CST-CP compared with boys. In addition, girls had a significantly lower E23 and higher FA in the right CST-PLIC compared with boys. Sex differences and lateralization in structure-based segments of the CST were found in healthy term infants during early postnatal period. These findings are vital to understanding motor development of healthy term born neonates to better interpret newborn infants with abnormal neurodevelopment.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Desenvolvimento Infantil/fisiologia , Tratos Piramidais/crescimento & desenvolvimento , Tratos Piramidais/fisiologia , Anisotropia , Mapeamento Encefálico/métodos , Pedúnculo Cerebral/fisiologia , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Vias Eferentes/crescimento & desenvolvimento , Feminino , Humanos , Recém-Nascido/crescimento & desenvolvimento , Recém-Nascido/fisiologia , Cápsula Interna/fisiologia , Masculino , Fatores Sexuais , Substância Branca/fisiologia
20.
Eur Radiol ; 29(3): 1527-1537, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30151640

RESUMO

OBJECTIVE: We aimed to determine the timing for assessing birth status of the developing brain (i.e. brain maturity at birth) by exploring the postnatal age-related changes in neonatal brain white matter (WM). METHODS: The institutional review board approved this study and all informed parental consents were obtained. 133 neonates (gestational age, 30-42 weeks) without abnormalities on MRI were studied with regard to WM development by diffusion tensor imaging-derived fractional anisotropy (FA). Tract-based spatial statistics (TBSS), locally-weighted scatterplot smoothing (LOESS) and piecewise linear-fitting were used to investigate the relationship between FA and postnatal age. FA along corticospinal tract (CST), optic radiation (OR), auditory radiation (AR) and thalamus-primary somatosensory cortex (thal-PSC) were extracted by automated fibre-tract quantification; their differences and associations with neonatal neurobehavioural scores at various postnatal age ranges were analysed by Wilcoxon's rank-sum test and Pearson's correlation. RESULTS: Using TBSS, postnatal age (days 1-28) positively correlated with FA in multiple WMs, including CST, OR, AR and thal-PSC (p<0.05). On the other hand, when narrowing the postnatal age window to days 1-14, no significant correlation was found, suggesting a biphasic WM development. LOESS and piecewise linear-fitting indicated that FA increased mildly before day 14 and its growth accelerated thereafter. Both FA and correlations with neurobehavioural scores in postnatal age range 2 (days 15-28) were significantly higher than in range 1 (days 1-14) (FA comparison: p<0.05; maximal correlation-coefficient: 0.693 vs. 0.169). CONCLUSION: Brain WM development during the neonatal stage includes two phases, i.e. a close-to-birth period within the first 14 days and a following accelerated maturation period. Therefore, evaluations of birth status should preferably be performed during the first period. KEY POINTS: • Brain white matter development within the first two postnatal weeks resembles a close-to-birth maturation. • Brain white matter development in the audio-visual, sensorimotor regions accelerates after two postnatal weeks. • Postnatal age-related effects should be considered in comparing preterm and term neonates.


Assuntos
Imagem de Tensor de Difusão/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/crescimento & desenvolvimento , Fatores Etários , Anisotropia , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/crescimento & desenvolvimento , Estudos Retrospectivos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA